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In this work, we give a closed-form expression for the nonlinear second-order differential
equation of geodesic curves associated with the Riemannian metric given by the Hessian of
the power potential function on Pn, the space of positive-definite matrices of order n. The
β-power potential function on Pn is [2]

Φβ(X) =
1− (detX)β

β
, β 6= 0. (1)

It generalizes the logarithmic potential in the sense that limβ→0 Φβ(X) = − ln det(X).
For β < 1

n , the Hessian of (1) is positive definite, and hence it provides at each point
X ∈ Pn a one-parameter family of Riemannian metrics on P(n) given by

gβ,X(U, V ) := (detXβ)
(
tr(X−1UX−1V )− β tr(X−1U) tr(X−1V )

)
, (2)

where U and V are points of the tangent space to Pn at X, identified as usual with the
space of symmetric matrices of order n.

A geodesic curve {X(t), t ∈ [0, 1]} with respect to the Riemannian metric (2) satisfies
the second-order matrix differential equation

d

dt

(
∂gβ,X(X ′, X ′)

∂X ′

)
−
∂gβ,X(X ′, X ′)

∂X
= On. (3)

Theorem 1 ([1]). Let X : [0, 1]→ P(n) be a smooth geodesic on P(n) equipped with the
Riemannian metric (2). Then, by introducing the matrix function G(t) = X−1(t)X ′(t), the
second-order ODE (3) can be written as the decoupled first-order system for X and G:

G′ =
β

2(1− nβ)

(
tr(G2)− β tr2(G)

)
I − β tr(G)G, (4a)

X ′ = XG. (4b)



It is worthy to note that (4.a) is a nonlinear (quadratic) ODE for G(t). Once G(t) is
obtained, the linear first-order ODE (4.b) can be solved for X(t).

We show that, under some conditions on β, there exists a unique geodesic curve for
the metric (2) joining two positive-definite matrices A and B and we provide an explicit
expression for this geodesic.

Before we state our main result, let us define the following measure of linear independence
between two symmetric positive definite matrices A and B

γβ(A,B) :=
|β|δ(det(A)−1/nA, det(B)−1/nB)

2
√

1/n− β
, (5)

where δ(·, ·) is the Riemannian distance on Pn given for any two matrices M,N ∈ Pn by

δ(M,N) :=
(∑n

i=1 ln2 λi

)1/2
, with λ1, . . . , λn are the eigenvalues of M−1N .

Theorem 2. If A,B ∈ P(n) are linearly independent, set d := δ(det(A)−1/nA, det(B)−1/nB)
and

β1 := −π
√
π2n2 + 4nd2 + πn

2nd2
, β2 := π

√
π2n2 + 4nd2 − πn

2nd2
.

Then, for β ∈ (β1, 0) ∪ (0, β2), there exists a unique geodesic joining A and B given by

Gβ(A,B, t) = η(t)A(A−1B)α(t), t ∈ [0, 1], (6)

where

α(t) =
1

γ
arctan

( tσ sin γ

1− t+ tσ cos γ

)
, η(t) =

((1− t)2 + 2t(1− t)σ cos γ + t2σ2

σ2α(t)

) 1
nβ
,

with σ = det(A−1B)β/2 and γ := γβ(A,B).

The geodesic curve (6) has an exponential part, similar to that of the geometric mean,
but with exponent α(t); and a scalar power part, η(t), which reduces to the weighted
2
nβ -power mean when γ = 0.

When β goes to 0 then (6) becomes the matrix geometric mean

lim
β→0

Gβ(A,B, t) = G0(A,B, t) := A(A−1B)t.

Furthermore, if A and B are linearly dependent matrices in P(n), then (6) reduces to the
matrix nβ

2 -power mean

Gβ(A,B, t) =
(
(1− t)A

nβ
2 + tB

nβ
2
) 2
nβ .
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