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Motivation: electronic structure calculation for molecules

electrical, magnetical, optical properties...
Virginie Ehrlacher (CERMICS)

Computation of the evolution in time of the state of the set of electrons in a molecule:
Schrédinger
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Many-body Schrodinger model

For the sake of simplicity, atomic units will be used and the influence of spin will be neglected.
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For the sake of simplicity, atomic units will be used and the influence of spin will be neglected.

Born-Oppenheimer approximation:

Let us consider a physical system composed of
o M nuclei, that are assumed to be (fixed) classical point charges, whose positions and electric
charges are denoted by Ry, ..., Ry € R3 and Zy, ..., Zy € N* respectively;
@ N electrons, considered as quantum particles: at time t € R, the state of the electrons is
represented by a complex-valued function % (t) : R3¥ — C. The function 1)(t) is called the
wavefunction of the system of electrons at time t € R.
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Many-body Schrodinger model

For the sake of simplicity, atomic units will be used and the influence of spin will be neglected.

Born-Oppenheimer approximation:

Let us consider a physical system composed of

o M nuclei, that are assumed to be (fixed) classical point charges, whose positions and electric
charges are denoted by Ry, ..., Ry € R3 and Zy, ..., Zy € N* respectively;

@ N electrons, considered as quantum particles: at time t € R, the state of the electrons is
represented by a complex-valued function % (t) : R3¥ — C. The function 1)(t) is called the
wavefunction of the system of electrons at time t € R.

Physical interpretation of the wavefunction:

For x1,...,xy € R3, the quantity |1 (t, x1,...,xy)|? represents the probability density at
time t of the positions xi, ..., xy of the N electrons.
For B c R3N,

f (¢, ~)\2: probability that the electrons are located in the set B at time t.
B
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Time-dependent Schrodinger equation

{ i0np(t) — Hip(t) =0, te (0, T) (1)
¥(0) = o

where the operator H = Hy + A is a self-adjoint operator on H = L2(R3V) with domain
D(H) = H?(R3V) called the Hamiltonian of the system of electrons and is given by

Ho = —Ax,...,xy (kinetic energy)
and

(coulombic energy)

A=V(x,..., XN)—ZZ\X,—Rk\+ 2

k=1i=1 1<i<j<N Ixi = xl
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Goal: quadratic variational formulation of the TD Schrodinger equation

Our aim here is to express equivalently the solution 1) of (7) as the solution of a variational
problem of the form

Vo e Xy, a(y, ) = b(e)
with
e Xy a Hilbert space of functions depending both on the time and space variable;
@ a: Xy x Xy a continuous hermitian coercive sesquilinear form

e b: Xy — C a continuous linear form
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Vo e Xy, a(y, ) = b(e)
with
e Xy a Hilbert space of functions depending both on the time and space variable;
@ a: Xy x Xy a continuous hermitian coercive sesquilinear form
@ b: Xy — C a continuous linear form

so that
1 = argmin &(¢)
PpEXY
with 1
Vo € Xy, E(p) = salp, @) — b(p)
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Goal: quadratic variational formulation of the TD Schrodinger equation

Our aim here is to express equivalently the solution 1) of (7) as the solution of a variational
problem of the form
Vo e Xy, a(y, ) = b(e)
with
e Xy a Hilbert space of functions depending both on the time and space variable;
@ a: Xy x Xy a continuous hermitian coercive sesquilinear form
@ b: Xy — C a continuous linear form

so that
1 = argmin &(¢)
PpEXY
with 1
Vo € Xy, E(p) = salp, @) — b(p)

There are several ways to do so!
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Wishlist

One would like the previous variational formulation to have the following properties:
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One would like the previous variational formulation to have the following properties:

o the space Xy should be easy to characterize;
@ the coercivity and continuity constants of a and b should not depend too strongly on the
value of the final time T;

Two main interests/motivations:
o global space-time Galerkin discretization methods: given X; < X}y a finite-dimensional
subspace of Xy, compute 14 € Xy solution to
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Wishlist

One would like the previous variational formulation to have the following properties:

o the space Xy should be easy to characterize;
@ the coercivity and continuity constants of a and b should not depend too strongly on the
value of the final time T;

Two main interests/motivations:
o global space-time Galerkin discretization methods: given X; < X}y a finite-dimensional
subspace of Xy, compute 14 € Xy solution to

Vog € Xy,  a(tg,0d) = b(og)
Cea’s lemma: [ — 94| x, < Cinfyiex, |V — @dlxy,

o dynamical low-rank approximations well-defined on the whole time interval (0, T) whatever
the value of the final time T
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References on global space-time discretization methods for TD Schrodinger
equations

Petrov-Galerkin discretizations:

[Demkowicz et al., 2017], [Gomez, Moiola, 2022], [Gomez, Moiola, 2024], [Hain, Urban, 2022]

At least up to our knowledge, all restricted to
@ bounded spatial domains;

@ bounded/smooth interaction potentials.

Virginie Ehrlacher (CERMICS) Schrédinger Pisa, 04/03/24 9/33



0 Aim and motivation

© Variational formulation of the time-dependent Schrddinger equation
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Notation and definition of weak solutions

o Let H be a Hilbert space equipped with a scalar product {-,-) and associated norm | - |
o Let H be a self-adjoint operator on H with domain D(H)
o Let / := (0, T) and consider the Bochner space L2(/; H)

Virginie Ehrlacher (CERMICS) Schrédinger Pisa, 04/03/24 11/33



Notation and definition of weak solutions

o Let H be a Hilbert space equipped with a scalar product {-,-) and associated norm | - |
o Let H be a self-adjoint operator on H with domain D(H)
o Let / := (0, T) and consider the Bochner space L2(/; H)

For all ug € H and f € L%(I; H), consider u* the unique weak solution to

i0cu* (t) — Hu*(t) = f(t), tel,
{ u*(0) = up )

Virginie Ehrlacher (CERMICS) Schrédinger Pisa, 04/03/24 11/33



Notation and definition of weak solutions

o Let H be a Hilbert space equipped with a scalar product {-,-) and associated norm | - |
o Let H be a self-adjoint operator on H with domain D(H)
o Let / := (0, T) and consider the Bochner space L2(/; H)

For all ugp € H and f € Lz(l; H), consider u* the unique weak solution to

i0cu* (t) — Hu*(t) = f(t), tel,
{ u*(0) = up )

Definition (Notion of weak solutions)

A function u* € L2(/;H) is said to be a weak solution to (2) if and only if
(C1) Vv e o1, D(H)) ~ CL(I,H),

(W*[(i0e = H)V) 12130) = (FIV) 2130
(C2) u*(0) = up
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Notation and definition of weak solutions

o Let H be a Hilbert space equipped with a scalar product {-,-) and associated norm | - |
o Let H be a self-adjoint operator on H with domain D(H)
o Let / := (0, T) and consider the Bochner space L2(/; H)

For all ugp € H and f € L2(I; H), consider u* the unique weak solution to

i0cu* (t) — Hu*(t) = f(t), tel,
{ u*(0) = up )

Definition (Notion of weak solutions)

A function u* € L2(/;H) is said to be a weak solution to (2) if and only if
(C1) Vv e o1, D(H)) ~ CL(I,H),

(W*[(i0e = H)V) 12130) = (FIV) 2130
(C2) u*(0) = up

Remark: Actually, (C1) implies that u* € C°(; 1), which enables to give a meaning to (C2)
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A first variational formulation (not useful)

Define
Xy ={u" e L2(1;H) = I(ug, F) € H x L%(I; H) such that u* solves (2)}

Virginie Ehrlacher (CERMICS) Schrédinger Pisa, 04/03/24 12/33



A first variational formulation (not useful)

Define
Xy ={u" e L2(1;H) = I(ug, F) € H x L%(I; H) such that u* solves (2)}

This space is a Hilbert space when equipped with the inner product
Yu,v e Xy, (u,v)xy = (u(0),v(0)) + T((i0r — H)u|(ide — H)v) 2. (3)

The associated norm is then denoted by

Nl

Vo e X, Jula, = (6P + T2 = H)ulZ(, 5)) (4)
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A first variational formulation (not useful)

Define
Xy ={u" e L2(1;H) = I(ug, F) € H x L%(I; H) such that u* solves (2)}

This space is a Hilbert space when equipped with the inner product
Yu,v e Xy, (u,v)x, =<u(0),v(0)) + T((idr — H)u|(idr — H)V)LZU;H) (3)

The associated norm is then denoted by

Nl

Vo e X, Jula, = (6P + T2 = H)ulZ(, 5)) (4)

Equivalent formulation:

u* = argmin |u(0) — up|? + T|(ide — H)u —

f7
ueXy L20H)
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A first variational formulation (not useful)

Define
Xy ={u" e L2(1;H) = I(ug, F) € H x L%(I; H) such that u* solves (2)}

This space is a Hilbert space when equipped with the inner product
Yu,v e Xy, (u,v)xy = (u(0),v(0)) + T((i0r — H)u|(ide — H)v) 2.

The associated norm is then denoted by

Nl

Vo e X, Jula, = (6P + T2 = H)ulZ(, 5))

Equivalent formulation:

u* = argmin |u(0) — up|? + T|(ide — H)u — f\é(/ )
ueXy !
Problem: what is the space X7
Virginie Ehrlacher (CERMICS) Schrédinger Pisa, 04/03/24
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First characterization of Xy

The application

{Lz(/;H) - L[(IH)

u o eitHy (5)

defines an isomorphism between Xy and H(I; H).
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First characterization of Xy

The application

{Lz(/;H) - L[(IH)

u o eitHy (5)

defines an isomorphism between Xy and H(I; H).

In other words,
Xy = {efitHv t Ve Hl(I;H)}

Problem again: the evolution group e~/ is not easy to compute/characterize in general
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Main idea: H = Hp + A

Key ingredient: write the operator H as H = Hy + A for some operators Hyp and A so that
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Main idea: H = Hp + A

Key ingredient: write the operator H as H = Hy + A for some operators Hyp and A so that
@ the space X}y, can be easily characterized and discretized

@ A is a "small perturbation” of Hp in some sense

many-body electronic Schrodinger operator: Hy = —A, ... xy-

The proofs of the following results rely on Kato’s smoothing theory [Reed, Simon, 1978]

Virginie Ehrlacher (CERMICS) Schrédinger Pisa, 04/03/24

14/33



Assumptions on Hp and A

Assumptions (A):

(A1) The operator Hp is a self-adjoint operator on H with domain D(Hp)

(A2) The operator A is a closed symmetric operator on H such that D(Hp) < D(A)
(A3) There exists some € > 0 such that

sup [A(Ho — A +ie) 7t <1 (6)
AER
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(A2) The operator A is a closed symmetric operator on H such that D(Hp) < D(A)
(A3) There exists some € > 0 such that

sup [A(Ho — A +ie) 7t <1 (6)
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Let Hy and A be operators on H satisfying the set of assumptions (A).
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Assumptions on Hp and A

Assumptions (A):

(A1) The operator Hp is a self-adjoint operator on H with domain D(Hp)

(A2) The operator A is a closed symmetric operator on H such that D(Hp) < D(A)
(A3) There exists some € > 0 such that

sup [A(Ho — A +ie) 7t <1 (6)
AER

Let Hy and A be operators on H satisfying the set of assumptions (A).
o Then H = Hy + A defined on D(H) := D(Hp) is self-adjoint.
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Assumptions on Hp and A

Assumptions (A):

(A1) The operator Hp is a self-adjoint operator on H with domain D(Hp)

(A2) The operator A is a closed symmetric operator on H such that D(Hp) < D(A)
(A3) There exists some € > 0 such that

sup [A(Ho — A +ie) 7t <1 (6)
AER

Let Hy and A be operators on H satisfying the set of assumptions (A).
o Then H = Hy + A defined on D(H) := D(Hp) is self-adjoint.
@ It holds that X = X}y,

o There exist constant «, C > 0 independent of T such that

Yue XHO’

«
m“““x,.,o < Julla, < CA+ T)H“HXHO
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Consequence: second variational formulation

u* = argmin [u(0) — uol® + (i9e — Ho — A)u — f[72 1.5
uE(\HO

Virginie Ehrlacher (CERMICS) Schrédinger Pisa, 04/03/24 16 /33



Consequence: second variational formulation

u* = argmin [u(0) — uol® + (i9e — Ho — A)u — f[72 1.5
uE(\HO

Xhy = {e_itHov T veE Hl(l;’H)}

Virginie Ehrlacher (CERMICS) Schrédinger Pisa, 04/03/24 16 /33



Consequence: second variational formulation

u* = argmin [u(0) — uol® + (i9e — Ho — A)u — f[72 1.5
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Xhy = {e_itHov T veE Hl(l;’H)}
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Consequence: second variational formulation

u* = argmin [u(0) — uo|* + [ (idc — Ho — A)u — F| 2139,

uE(\’HO

Xhy = {e_itHov T veE Hl(l;’H)}

Let v* € H'(/;H) such that u* = e~ *Hov*. We then have

v* = argmin |(e”™0v)(0) — wp|? +

veHL(I;H)

(idr — Ho — A)(e~"tHoy) — f ?
L2(1;H)

o (e~ tHoy)(0) = v(0)

o since the evolution group et is a unitary group, it holds that

. . . 2
e (idy — Hy — A)(e ™Moy — e/tfof

l(ioe — Ho — A)(e~ o) — £
¢ b ()

2(H) ‘
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Consequence: second variational formulation

u* = argmin [u(0) — uo|* + [ (idc — Ho — A)u — F| 2139,

uE(\’HO
Xhy = {e_itHov D ve Hl(l;’H)}

Let v* € H'(/;H) such that u* = e~ *Hov*. We then have

v* = argmin |(e”™0v)(0) — wp|? +

. 2
(idr — Ho — A)(e~"tHoy) — f
veHL(I;H)

[2(1;H)

o (e~ tHoy)(0) = v(0)

o since the evolution group et is a unitary group, it holds that

|(i0: — Ho — A)(e~™Hov) — ;(:;H) |

; . . 2
itHy (:49. _ —itHp _ LitHp
e (i0r — Hy — A)(e v) —e'tof ()

o for all ve HY(I;H), et (ioy)e~tHoy = eftbe=itho (Hy 4 idy)v = (Ho + id¢)v

Virginie Ehrlacher (CERMICS) Schrédinger Pisa, 04/03/24 16 /33



Consequence: second variational formulation

u* = argmin [u(0) — uol® + (i9e — Ho — A)u — f[72 1.5
uE(\HO

Xhy = {e_itHov T veE Hl(l;’H)}

Let v* € H'(/;H) such that u* = e~ *Hov*. We then have

v* = argmin |(e”™0v)(0) — wp|? +

. 2
(idr — Ho — A)(e~"tHoy) — f
veHL(I;H)

[2(1;H)

o (e~ tHoy)(0) = v(0)

o since the evolution group et is a unitary group, it holds that

|(i0: — Ho — A)(e~™Hov) — ;(:;H) |

; . . 2
itHy (:49. _ —itHp _ LitHp
e (i0r — Hy — A)(e v) —e'tof ()

o for all ve HY(I;H), et (ioy)e~tHoy = eftbe=itho (Hy 4 idy)v = (Ho + id¢)v

and e'tHo Hye—tHoy = eitHo e —itHo Hyy because Hy commutes with e~ /tHo,
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Consequence: second variational formulation

Let Hy and A be operators on H satisfying (A). Let ug € H and f € L?(1; H).
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Consequence: second variational formulation

Theorem

Let Hy and A be operators on H satisfying (A). Let ug € H and f € L?(1; H).
Then, the solution u* to (2) is given by u* = e~ "™ov* where v* € H(I;H) is the unique
solution to
v* = argmin F(v)
veH(I;H)
with

F(v) = |v(0) — uo|* + T | (id: — e Ae~"tHo)y — efttof

[2(1;H)
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Consequence: second variational formulation

Let Hy and A be operators on H satisfying (A). Let ug € H and f € L?(1; H).
Then, the solution u* to (2) is given by u* = e~ "™ov* where v* € H(I;H) is the unique
solution to
v* = argmin F(v)
veH(I;H)
with

F(v) = |v(0) — uo|* + T | (id: — e Ae~"tHo)y — efttof

[2(1;H)

Moreover, there exists o, C > 0 independent on T such that

(e * *
Vv e HY(I; 1), 1+7T”V7 gy S A F(v) < CQ+ Tllv = vy
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Consequence: second variational formulation

Let Hy and A be operators on H satisfying (A). Let ug € H and f € L?(1; H).
Then, the solution u* to (2) is given by u* = e~ "™ov* where v* € H(I;H) is the unique
solution to
v* = argmin F(v)
veH(I;H)
with

F(v) = |v(0) — uo|* + T | (id: — e Ae~"tHo)y — efttof

[2(1;H)

Moreover, there exists o, C > 0 independent on T such that

(e * *
Vv e HY(I; 1), 1+7T”V7 gy S A F(v) < CQ+ Tllv = vy

Remark: We obtain a similar result in the case when u* is the solution of a time-dependent
Schrédinger equation of the form

{ ioru*(t) — (Ho + A+ B(t))u*(t) = f(t), tel,
u*(0) = up

where B : | 5t + B(t) is a strongly continuous family of bounded self-adjoint operators on .
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0 Aim and motivation

e Variational formulation of the time-dependent Schrédinger equation
© Application to the many-body electronic Schrédinger problem

© Global space-time discretization methods
e Dynamical low-rank approximations

@ Summary

«O»r «Fr < >« > Q>



Many-body electronic Schrodinger problem

{ i0np(t) — Hip(t) =0, te (0, T) @
¥(0) = o

where the operator H = Hy + A is a self-adjoint operator on H = L2(R3V) with domain
D(H) = H?(R3M) is given by

Ho = —Ax,...xy (kinetic energy)

and

A=V(xy,...,x Z Z \X: — Rk\ (coulombic energy)

k=1i=1 1<i<j<N Ixi = x|
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Many-body electronic Schrodinger problem

{ idep(t) — HY(t) =0, te(0,T)
¥(0) = o

where the operator H = Hy + A is a self-adjoint operator on H = L2(R3V) with domain
D(H) = H?(R3M) is given by

Ho = —Ax,...xy (kinetic energy)

and

A=V(xy,...,x Z Z \X: — Rk\ (coulombic energy)

k=1i=1 1<i<j<N Ixi = x|

Question: Do Hy and A satisfy assumptions (A1)-(A2)-(A3)?
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where the operator H = Hy + A is a self-adjoint operator on H = L2(R3V) with domain
D(H) = H?(R3M) is given by

Ho = —Ax,...xy (kinetic energy)

and

A=V(xy,...,x Z Z \X: — Rk\ (coulombic energy)

k=1i=1 1<i<j<N Ixi = x|

Question: Do Hy and A satisfy assumptions (A1)-(A2)-(A3)?
YES!!
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Many-body electronic Schrodinger problem

{ idep(t) — HY(t) =0, te(0,T)
¥(0) = o

where the operator H = Hy + A is a self-adjoint operator on H = L2(R3V) with domain
D(H) = H?(R3M) is given by

Ho = —Ax,...xy (kinetic energy)

and

A=V(xy,...,x Z Z \X: — Rk\ (coulombic energy)

k=1i=1 1<i<j<N Ixi = x|

Question: Do Hy and A satisfy assumptions (A1)-(A2)-(A3)?
YES!!
WHY?777?

Virginie Ehrlacher (CERMICS) Schrédinger Pisa, 04/03/24

™

19/33



Kato smoothing theory

Let Hy and A be operators on H satisfying (A1)-(A2).
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Kato smoothing theory

Let Hy and A be operators on H satisfying (A1)-(A2).
Then, if

sup j dt|Ae~ 0|2 < oo,
PeH, |p|=1JR

then Hy and A satisfy (A3).
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Kato smoothing theory

Let Hy and A be operators on H satisfying (A1)-(A2).
Then, if

sup j dt|Ae~ 0|2 < oo,
PeH, |p|=1JR

then Hy and A satisfy (A3).

The operator A is said to be Hp-smooth.
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Kato smoothing theory

Let Hy and A be operators on H satisfying (A1)-(A2).
Then, if

sup j dt|Ae~ 0|2 < oo,
PEH, |p|=

then Hy and A satisfy (A3).

The operator A is said to be Hp-smooth.

sup j dt H VeltA

pel2(R3N), el 2 gany =1 R

N(N —
]2 gy < (NEZ s )) @)
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Kato smoothing theory

Let Hy and A be operators on H satisfying (A1)-(A2).
Then, if

sup j dt|Ae~ 0|2 < oo,
PEH, |p|=

then Hy and A satisfy (A3).

The operator A is said to be Hp-smooth.

sup j dt H VeltA

pel2(R3N), el 2 gany =1 R

N(N —
]2 gy < (NEZ s )) @)

stems from Kato-Yajima inequality: [Kato, Yajima,1989], [Burq, 2004]
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Variational formulation: many-body electronic Schrodinger case

Let up € L2(R3N). Let 1) be the solution to (7), and v* := e~ tAq).
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Variational formulation: many-body electronic Schrodinger case

Theorem

Let up € L2(R3N). Let 1) be the solution to (7), and v* := e~ tAq).
Define for any v € H(I; L2(R3N)) the functional

: 5 2
F(v) = [v(0) = wlf2gon, + T |(ide — &4 Ve®)y

L2(1,L2(R3N))

9
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Variational formulation: many-body electronic Schrodinger case

Theorem

Let up € L2(R3N). Let 1) be the solution to (7), and v* := e~ tAq).
Define for any v € H(I; L2(R3N)) the functional

. . 2
o 2 i _—itA itA
F(v) = [V(0) = toll2gany + T H(/ot eV oy (9)
Then, there exist constants C,a > 0 such that for any v € H*(I, L?(R3N)),
e
T v = vl 2@snyy < A/F(V) < CVI+T v — v 2@y (10)

<
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@ Aim and motivation

© Variational formulation of the time-dependent Schrédinger equation
9 Application to the many-body electronic Schrédinger problem

© Global space-time discretization methods
© Dynamical low-rank approximations

@ Summary
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Electronic many-body Schrodinger case

v = argmin F(v)

veHl(I;LZ(R3N))
with )
[v(0) — uonz(Rw) + TH(,’@t _ et eitdy,

L2(1,L2(R3N))
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Electronic many-body Schrodinger case

v = argmin F(v)

veHl(I;LZ(R3N))
with )
[v(0) — uonz(Rw) + TH(,’at _ et eitdy,

L2(1,L2(R3N))

Idea: Find a discretization space V; < H(/; L2(R3V)) and find

v = argmin F(v)
veVy
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Electronic many-body Schrodinger case

v = argmin F(v)

veHl(I;LZ(R3N))
with )
[v(0) — uo\\f2(R3N) + TH(,’at _ et eitdy,

L2(1,L2(R3N))

Idea: Find a discretization space V; < H(/; L2(R3V)) and find

vj = argmin F(v)
veVy

By Céa’s lemma, we then have

Iv* = Vel guzanyy < € inf V7 = valli 2 memy)
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Electronic many-body Schrodinger case

v = argmin F(v)

veHl(/;LZ(R3N))
with )
[v(0) — uonz(Rw) + TH(,’@t _ et eitdy,

L2(1,L2(R3N))

Idea: Find a discretization space V; < H(/; L2(R3V)) and find

v = argmin F(v)
veVy

By Céa’s lemma, we then have
* * . *
IV = Vgl 2 @anyy < € Vd'gf/d Iv* = val pr 2 m3ny)
Ongoing work:

o Hagedorn functions [Lasser, Lubich, 2020]

@ Space-time wavelets (on-going work with Markus Bachmayr)
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Preliminary results on a simpler test case

Periodic boundary conditions on [0, 1]2:

i0ru* = (_Ax,y + V(t,x,y))u*, (]_]_)
u(0) = up,

with V(t,x,y) = cos(2m(x — c1t)) + cos(2m(y — cot)) + cos(2w(x — y)) for some constants
C1,C > 0.
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{l[)tu = (—Ax,y + V(t,x,y))u*, (11)

u(0) = up,

with V(t,x,y) = cos(2m(x — c1t)) + cos(2m(y — cot)) + cos(2w(x — y)) for some constants
C1,C > 0.

Discretization: Tchebychev polynomials in time and Fourier modes in space
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Preliminary results on a simpler test case

Periodic boundary conditions on [0, 1]2:

{l[)tu = (—Ax,y + V(t,x,y))u*, (11)

u(0) = up,

with V(t,x,y) = cos(2m(x — c1t)) + cos(2m(y — cot)) + cos(2w(x — y)) for some constants
C1,C > 0.

Discretization: Tchebychev polynomials in time and Fourier modes in space
Comparison with a Cranck-Nicholson time scheme

For a fixed number of Fourier modes (dicretization in space), K is either:
@ maximal degree of Tchebychev polynomials in the global space-time scheme

@ maximal number of time steps in the Cranck-Nicholson scheme

Virginie Ehrlacher (CERMICS) Schrédinger Pisa, 04/03/24 24 /33



Preliminary results on a simpler test case

Periodic boundary conditions on [0, 1]2:

{l[)tu = (—Ax,y + V(t,x,y))u*, (11)

u(0) = up,

with V(t,x,y) = cos(2m(x — c1t)) + cos(2m(y — cot)) + cos(2w(x — y)) for some constants
C1,C > 0.

Discretization: Tchebychev polynomials in time and Fourier modes in space
Comparison with a Cranck-Nicholson time scheme

For a fixed number of Fourier modes (dicretization in space), K is either:
@ maximal degree of Tchebychev polynomials in the global space-time scheme

@ maximal number of time steps in the Cranck-Nicholson scheme

Time interval: [—7, 7]
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Error in |

leo(r:22((0,1)2))

10°

—10

—%— Chebyshev t=0.01
—4— Crank-Nicolson t=0.01
--%-- Chebyshev 1=0.05
~-+-- Crank-Nicolson 1=0.05
-3k Chebyshev t=0.1

_15
10 7 |-~ Crank-Nicolson T=0.1

10t 10°
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Computational time

107°
1070
—%— Chebyshev t=0.01
—4— Crank-Nicolson 1=0.01
-~ -~ Chebyshev t=0.05
~-+--- Crank-Nicolson 1=0.05
15 -~ Chebyshev t=0.1
10 [ |-+ Crank-Nicolson t=0.1
*
1 . .
107! 10° 10*
Computation time (s)
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@ Aim and motivation

© Variational formulation of the time-dependent Schrédinger equation
9 Application to the many-body electronic Schrédinger problem
© Global space-time discretization methods

° Dynamical low-rank approximations

@ Summary
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Low-rank tensor formats

Question: What can we do when N, the number of electrons is large?
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Low-rank tensor formats

Question: What can we do when N, the number of electrons is large?

Let ¥ < H = L?>(R3N) be a susbet of functions of x1, ..., xy which can be represented in some
low-rank tensor format (or more generally with low complexity).
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Low-rank tensor formats

Question: What can we do when N, the number of electrons is large?

Let ¥ < H = L?>(R3N) be a susbet of functions of x1, ..., xy which can be represented in some
low-rank tensor format (or more generally with low complexity).
Examples:

o Pure tensor products: ¥ = {ri(x1)...rn(xn), ri,...,rn € L2(R3)}
(with antisymmetry: set of Slater determinants)

o Tucker format (with antisymmetry: Multi Configuration Self Consistent Field)

@ Tensor Train format, Hierarchical Tree format

Ceruti, Dolgov, Dupuy, Grigori, Hackbusch, Kressner, Khoromskij, Lasser, Lombardi, Lubich,
Oseledets, Schneider, Uschmajew,...
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Low-rank tensor formats

Question: What can we do when N, the number of electrons is large?

Let ¥ < H = L?>(R3N) be a susbet of functions of x1, ..., xy which can be represented in some
low-rank tensor format (or more generally with low complexity).
Examples:

o Pure tensor products: ¥ = {ri(x1)...rn(xn), ri,...,rn € L2(R3)}
(with antisymmetry: set of Slater determinants)

o Tucker format (with antisymmetry: Multi Configuration Self Consistent Field)

@ Tensor Train format, Hierarchical Tree format

Ceruti, Dolgov, Dupuy, Grigori, Hackbusch, Kressner, Khoromskij, Lasser, Lombardi, Lubich,
Oseledets, Schneider, Uschmajew,...

Dynamical low-rank approximation: The aim is to compute an approximation i of u* (or 1))
such that u(t) € X for all t.
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Dirac-Frenkel variational principle

Find & such that for almost all t,
((i6c — HYa(e), 60 = (F(1), 60y, Vo0 € Too)S, (12)

where Tj(;) X is the tangent space to X at point &(t).
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Dirac-Frenkel variational principle

Find & such that for almost all t,
((ide — H)i(e), 3y = (F(2),68), Vol € Ty T,

where Tj(;) X is the tangent space to X at point &(t).

(12)

In general, except in some particular situations, one can only obtain the local existence in time of

a solution o to (12).
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Alternative variational principle?

Very nice property: et is a pure tensor product of operators:
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Alternative variational principle?

Very nice property: e™® is a pure tensor product of operators:

Rather look for & = e™2V solution to
v € argmin F(w) (13)
weHL(I;T)

Let ¥ be a weakly closed subset of H. Then, H(I;X) is a weakly closed subset of H(I;H).
Hence, there always exists at least one solution to (13).
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Alternative variational principle?

Very nice property: et is a pure tensor product of operators:

Rather look for & = e™2V solution to
v € argmin F(w) (13)
weHL(I;T)

Let ¥ be a weakly closed subset of H. Then, H(I;X) is a weakly closed subset of H(I;H).
Hence, there always exists at least one solution to (13).

In principle, global in time existence of dynamical low-rank approximations.
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@ Aim and motivation

© Variational formulation of the time-dependent Schrédinger equation
e Application to the many-body electronic Schrédinger problem
© Global space-time discretization methods

© Dynamical low-rank approximations

© Summary
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Summary and perspectives

@ Result: New variational global space-time formulation of the solution of the time-dependent
Schrédinger equation
Analysis covers the case of potential with Coulombic singularities and unbounded domains
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Summary and perspectives

@ Result: New variational global space-time formulation of the solution of the time-dependent
Schrédinger equation
Analysis covers the case of potential with Coulombic singularities and unbounded domains
o Perspectives:
o Global space-time Galerkin discretization methods (preliminary numerical tests in simple test cases)
o Alternative variational principle for dynamical low-rank approximations allowing for global-in-time
existence
o Open question: how to impose norm conservation in this global space-time formulation?
Not completely obvious...
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Thank you for your attention!
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