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Question

Do area minimizing hypersurfaces in RCD spaces have vanishing
mean curvature? Are isoperimetric surfaces CMC?

Question

Does the lower Ricci curvature bound affect the second variation
of the area in RCD spaces?

Motivations

Understand Curvature, [Gromov ‘19];
GMT on singular spaces as a new tool for classical GMT.
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Ricci bounds and minimal hypersurfaces, I

(Mn,g) smooth Riemannian manifold; Σn−1 ⊂ M smooth and
compact codimension one hypersurface.
X compactly supported, smooth vector field; denote its flow by
Φt : M × (−ε, ε)→ M. Then we have the first variation formula

d
dt
|t=0Hn−1(Φt (Σ)) =

∫
Σ

divΣX dHn−1 = −
∫

Σ

H · X dHn−1 .

Corollary

If Σ minimizes the area among compactly supported
perturbations then it is minimal, i.e. H ≡ 0.
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Ricci bounds and minimaly hypersurfaces, II

Let Σ be minimal and two-sided with unit normal ν. We can
compute the second variation of the area for vector fields X such
that X = fν along Σ:

d2

dt2 |t=0Hn−1(Φt (Σ)) =

∫
Σ

[
|∇Σf |2 −

(
|II|2 + Ric(ν, ν)

)
f 2] dHn−1 .

By plugging f ≡ 1 (equidistant variation) in the second variation
formula we get

d2

dt2 |t=0Hn−1(Σt ) = −
∫

Σ

(
|II|2 + Ric(ν, ν)

)
dHn−1 .
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Bad examples

Example

Let D be a flat two dimensional disk with boundary C. Let D̃ be
the metric space obtained by doubling D along the boundary.

The metric space (D̃, dD̃,H2) is RCD(0,2). There is singular
distributional Gaussian curvature along the copy of C;
the area functional is not differentiable along normal
variations.

Example

In [Otsu-Shioya, JDG ‘94] an example of 2d convex surface with a
dense set of singular points is constructed.
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Comments

Any RCD(K ,N) space X is isomorphic to a perimeter
minimizing boundary in X × R;
any RCD(N − 2,N − 1) space X is isomorphic to an
isoperimetric set in the cone C(X );
the classical regularity theory in GMT does not make sense
in this setting;
the regularity theory for flows of vector fields under lower
Ricci bounds ([Colding-Naber, Ann. of Math. ‘11],
[Kapovitch-Wilking ‘12], [Bruè-S., CPAM ‘18], [Deng ‘20], . . . )
seems not sufficiently developed for permitting a first
variation formula for the perimeter.
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Laplacian comparison for perimeter minimizers

For K ∈ R and 1 ≤ N <∞ let
τK ,N := −

√
K (N − 1) tan(

√
K/(N − 1)x) if K > 0;

τ0,N := 0;

τK ,N :=
√
−K (N − 1) tanh(

√
−K/(N − 1)x) if K < 0.

Theorem (Mondino-S. ‘21)

Let (X , d,HN) be an RCD(K ,N) metric measure space. Let
E ⊂ X be a set of locally finite perimeter and assume that it is a
local perimeter minimizer. Let dE : X \ E → [0,∞) be the distance
function from E. Then

∆dE ≤ τK ,N ◦ dE on X \ E .
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Laplacian comparison for isoperimetric sets

For k , λ ∈ R let

sk,λ(r) := cosk (r)− λ sink (r) ,

cos′′k +k cosk = 0 , cosk (0) = 1 , cos′k (0) = 0 ,

sin′′k +k sink = 0 , sink (0) = 0 , sin′k (0) = 1 .

Theorem (Antonelli-Pasqualetto-Pozzetta-S. ‘22)

Let (X , d,HN) be an RCD(K ,N) space and E ⊂ X be an
isoperimetric region. Then, there exists c ∈ R such that

∆dE ≥ −(N − 1)
s′ K

N−1 ,
c

N−1
◦
(
−dE

)
s K

N−1 ,
c

N−1
◦
(
−dE

) on E ,

∆dE ≤ (N − 1)
s′ K

N−1 ,−
c

N−1
◦ dE

s K
N−1 ,−

c
N−1
◦ dE

on X \ E .
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The K = 0 case

If K = 0 (nonnegative Ricci) then the bounds take the nicer form.

Corollary

If (X , d,HN) is RCD(0,N) and E ⊂ X is isoperimetric, there exists
c ∈ [0,∞) such that

∆dE ≤
c

1 + c
N−1 dE

, on X \ E ,

∆(−dX\E ) ≥ c
1− c

N−1 dX\E
, on E .

Remark

If the ambient is smooth Riemannian and ∂E is smooth, then c
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Comments

The distance function is not smooth even on smooth
Riemannian manifolds;
the bounds make perfectly sense on RCD(K ,N) spaces.
They can be understood distributionally;
the bounds are sharp and attained on the model spaces;
on RN the bounds imply that ∂E is a viscosity solution of the
minimal surfaces/constant mean curvature equation [Savin,
Comm. PDEs ‘07];
if E has smooth boundary inside a smooth Riemannian
manifold, then they imply vanishing/constant mean curvature
for the boundary;
no need to talk about mean curvature of the area minimizing
boundary.



First and
second

variation RCD

Daniele Semola

Introduction

Smooth setting

Examples

Laplacian
comparison

Classical

Non smooth

Comments

The distance function is not smooth even on smooth
Riemannian manifolds;
the bounds make perfectly sense on RCD(K ,N) spaces.
They can be understood distributionally;
the bounds are sharp and attained on the model spaces;
on RN the bounds imply that ∂E is a viscosity solution of the
minimal surfaces/constant mean curvature equation [Savin,
Comm. PDEs ‘07];
if E has smooth boundary inside a smooth Riemannian
manifold, then they imply vanishing/constant mean curvature
for the boundary;
no need to talk about mean curvature of the area minimizing
boundary.



First and
second

variation RCD

Daniele Semola

Introduction

Smooth setting

Examples

Laplacian
comparison

Classical

Non smooth

Comments

The distance function is not smooth even on smooth
Riemannian manifolds;
the bounds make perfectly sense on RCD(K ,N) spaces.
They can be understood distributionally;
the bounds are sharp and attained on the model spaces;
on RN the bounds imply that ∂E is a viscosity solution of the
minimal surfaces/constant mean curvature equation [Savin,
Comm. PDEs ‘07];
if E has smooth boundary inside a smooth Riemannian
manifold, then they imply vanishing/constant mean curvature
for the boundary;
no need to talk about mean curvature of the area minimizing
boundary.



First and
second

variation RCD

Daniele Semola

Introduction

Smooth setting

Examples

Laplacian
comparison

Classical

Non smooth

Comments

The distance function is not smooth even on smooth
Riemannian manifolds;
the bounds make perfectly sense on RCD(K ,N) spaces.
They can be understood distributionally;
the bounds are sharp and attained on the model spaces;
on RN the bounds imply that ∂E is a viscosity solution of the
minimal surfaces/constant mean curvature equation [Savin,
Comm. PDEs ‘07];
if E has smooth boundary inside a smooth Riemannian
manifold, then they imply vanishing/constant mean curvature
for the boundary;
no need to talk about mean curvature of the area minimizing
boundary.



First and
second

variation RCD

Daniele Semola

Introduction

Smooth setting

Examples

Laplacian
comparison

Classical

Non smooth

Comments

The distance function is not smooth even on smooth
Riemannian manifolds;
the bounds make perfectly sense on RCD(K ,N) spaces.
They can be understood distributionally;
the bounds are sharp and attained on the model spaces;
on RN the bounds imply that ∂E is a viscosity solution of the
minimal surfaces/constant mean curvature equation [Savin,
Comm. PDEs ‘07];
if E has smooth boundary inside a smooth Riemannian
manifold, then they imply vanishing/constant mean curvature
for the boundary;
no need to talk about mean curvature of the area minimizing
boundary.



First and
second

variation RCD

Daniele Semola

Introduction

Smooth setting

Examples

Laplacian
comparison

Classical

Non smooth

Comments

The distance function is not smooth even on smooth
Riemannian manifolds;
the bounds make perfectly sense on RCD(K ,N) spaces.
They can be understood distributionally;
the bounds are sharp and attained on the model spaces;
on RN the bounds imply that ∂E is a viscosity solution of the
minimal surfaces/constant mean curvature equation [Savin,
Comm. PDEs ‘07];
if E has smooth boundary inside a smooth Riemannian
manifold, then they imply vanishing/constant mean curvature
for the boundary;
no need to talk about mean curvature of the area minimizing
boundary.



First and
second

variation RCD

Daniele Semola

Introduction

Smooth setting

Examples

Laplacian
comparison

Classical

Non smooth

Comments

The distance function is not smooth even on smooth
Riemannian manifolds;
the bounds make perfectly sense on RCD(K ,N) spaces.
They can be understood distributionally;
the bounds are sharp and attained on the model spaces;
on RN the bounds imply that ∂E is a viscosity solution of the
minimal surfaces/constant mean curvature equation [Savin,
Comm. PDEs ‘07];
if E has smooth boundary inside a smooth Riemannian
manifold, then they imply vanishing/constant mean curvature
for the boundary;
no need to talk about mean curvature of the area minimizing
boundary.



First and
second

variation RCD

Daniele Semola

Introduction

Smooth setting

Examples

Laplacian
comparison

Classical

Non smooth

First and second variation of the perimeter

Corollary

Let (X , d,HN) be an RCD(0,N) space and let E ⊂ X be
isoperimetric. Then, denoting by Et the t-enlargement of E,

Per(Et ) ≤ Per(E)

(
1 +

ct
N − 1

)N−1

, for any t ≥ 0 .

Proof.

Apply Gauss-Green on a tubular neighbourhood of ∂E and ODEs
comparison, taking into account the Laplacian comparison.

Remark

The estimate is sharp. It replaces the classical computation with
the second variation formula, to some extent.
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Classical case: smooth minimal hypersurface

∂E = ΣN−1 ⊂ X N smooth and minimal inside a smooth
Riemannian manifold: statement goes back at least to [Wu, Acta
Math. ‘79]. The bound was understood in the viscosity sense.

Along the minimal boundary the Laplacian of the distance
equals the (vanishing) mean curvature;
the information is propagated along minimizing geodesics up
to the cut-locus via the Jacobi fields computation

d
dt

∆dE (γ(t)) + ||HessdE (γ(t))||2HS + Ricγ(t)(∇dE ,∇dE ) = 0 .

and Riccati comparison for ODEs;
the contribution coming from the singularities of the distance
function has the right sign.
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Classical case: area minimizing hypersurface

For general area minimizing hypersurfaces (currents, sets of finite
perimeter) the classical argument is due to [Gromov ‘81].

Minimality needed only at foot-points FP of geodesics γP on
the boundary Σ = ∂E ;
for a.e. point at the foot-point on the boundary all the
blow-ups of the current are contained in a half-space;
by Almgren’s regularity theorem the area minimizing
boundary is smooth in a neighbourhood of these points;
then the smooth argument carries over.
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From a-dimensional to dimensional bounds

By the localization technique ([Cavalletti-Mondino ‘15, ‘18],
after [Klartag ‘14]) the Laplacian of any distance function on an
RCD(K ,N) space verifies

d
dt

∆d(γ(t)) +
1

N − 1
(∆d(γ(t)))2 ≤ −K ,

along minimizing geodesics such that d(γ(t)) = t + α. Moreover,
the singular contribution has negative sign.

Corollary

Let (X , d,HN) be an RCD(K ,N) space and E ⊂ X. Then

∆dE ≤ τK ,N ◦ dE on X \ E

if and only if
∆dE ≤ −K dE on X \ E .
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Comparison with previous literature

Inspired by [Caffarelli-Cordoba, Diff. Int. Eq. ‘93] on Rn and a
sketch in [Petrunin, E.R.A. ‘03] for Alexandrov spaces.

Remark

It exploits the duality between viscous, distributional and
variational interpretation of Laplacian bounds.

In [Caffarelli-Cordoba ‘93] proof via the viscosity theory, using
comparison with quadratic polynomials and the affine
structure;
in [Petrunin ‘03] (cf. also with [Cabré ‘97]) quadratic
polynomials are avoided but the proof relies on parallel
transport and the second variation of the arc length;
we completely avoid the classical regularity theory for area
minimizers and the use of parallel transport.
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A PDE principle, I

Theorem

Let (X , d,m) be an RCD(0,N) space and let ϕ : X → R be such
that ∆ϕ ≤ 0 on Ω ⊂ X. Then

Qp
t ϕ(x) := inf

y∈X

{
ϕ(y) +

dp(x , y)

ptp−1

}
verifies ∆Qp

t ϕ ≤ 0 in the region where the infumum is attained on
Ω, for any 1 < p <∞ and for any t > 0.

Remark

Hopf-Lax semigroup Qp
t ϕ solves Hamilton-Jacobi equation:

d
dt
Qp

t ϕ+
1
q
|∇Qp

t ϕ|
q = 0 , (1/p + 1/q = 1) .
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A PDE principle, II

For smooth Riemannian manifolds the PDE principle follows from
a computation with Jacobi fields/second variation of the arc length,
see [Andrews-Clutterbuck, Anal. PDE ‘13] (and [Petrunin ‘97]) for
morally analogous estimates.

Remark

A smooth Riemannian manifold has nonnegative Ricci if and only
the PDE principle holds.

In the RCD setting, the proof follows in almost elementary way
from the so-called Kuwada duality with the heat flow:

PsQp
t ϕ ≤ Q

p
t Psϕ for any s ≥ 0 ,

after [Kuwada, JFA ‘10], [Ambrosio-Gigli-Savaré, Ann. of Prob.
‘14].
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Laplacian comparison: strategy of the proof

Suppose K = 0, E perimeter minimizing and that
super-harmonicity of dE fails. We find a lower supporting
function ϕ for dE with strictly positive Laplacian at some
x ∈ X \ ∂E .
We consider the transform

ϕ̃(y) = max
z
{ϕ(z)− d(y, z)} .

ϕ̃ coincides with dE along a minimizing geodesic from x to xΣ

and ϕ̃ ≤ dE .
ϕ̃ is a distance-like function and ∆ϕ̃ > ε > 0 near to xΣ, by
the PDE principle.
We cut ∂E along level sets of ϕ̃, apply Gauss-Green and
contradict the area minimality.
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Strategy of the proof, II
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The isoperimetric case

Only volume fixing perturbations are admissible.

If K = 0 it is sufficient to find a barrier c ∈ R such that
∆dE ≤ c outside from E and ∆(−dX\E ) ≥ c inside E .

If no such barrier exists we find points x ∈ X \E and y ∈ E , a
regular lower touching function ϕ for dE at x , an upper
touching function ψ for −dX\E at y , such that

∆ϕ(x) > ∆ψ(y) .

We play the same game as before simultaneously with ϕ and
ψ. By continuity, there is a volume fixing perturbation with
strictly smaller perimeter, contradiction.
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Thank you for your attention!
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